Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.784
Filtrar
1.
Food Res Int ; 184: 114230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609219

RESUMO

This study explored differences in microbial lipid metabolites among sunflower seeds, soybeans, and walnuts. The matrices were subjected to in vitro digestion and colonic fermentation. Defatted digested materials and fiber/phenolics extracted therefrom were added to sunflower oil (SO) and also fermented. Targeted and untargeted lipidomics were employed to monitor and tentatively identify linoleic acid (LA) metabolites. Walnut fermentation produced the highest free fatty acids (FFAs), LA, and conjugated LAs (CLAs). Defatted digested walnuts added to SO boosted FFAs and CLAs production; the addition of fibre boosted CLAs, whereas the addition of phenolics only increased 9e,11z-CLA and 10e,12z-CLA. Several di-/tri-hydroxy-C18-FAs, reported as microbial LA metabolites for the first time, were annotated. Permutational multivariate analysis of variance indicated significant impacts of food matrix presence and type on lipidomics and C18-FAs. Our findings highlight how the food matrices affect CLA production from dietary lipids, emphasizing the role of food context in microbial lipid metabolism.


Assuntos
Microbioma Gastrointestinal , Juglans , Fermentação , Nozes , Gorduras na Dieta , Ácidos Graxos não Esterificados , Ácido Linoleico , Fenóis , Óleo de Girassol , Colo
2.
Food Res Int ; 184: 114243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609222

RESUMO

Recent explorations into rice bran oil (RBO) have highlighted its potential, owing to an advantageous fatty acid profile in the context of health and nutrition. Despite this, the susceptibility of rice bran lipids to oxidative degradation during storage remains a critical concern. This study focuses on the evolution of lipid degradation in RBO during storage, examining the increase in free fatty acids (FFAs), the formation of oxylipids, and the generation of volatile secondary oxidation products. Our findings reveal a substantial rise in FFA levels, from 109.55 to 354.06 mg/g, after 14 days of storage, highlighting significant lipid deterioration. Notably, key oxylipids, including 9,10-EpOME, 12,13(9,10)-DiHOME, and 13-oxoODE, were identified, with a demonstrated positive correlation between total oxylipids and free polyunsaturated fatty acids (PUFAs), specifically linoleic acid (LA) and α-linolenic acid (ALA). Furthermore, the study provides a detailed analysis of primary volatile secondary oxidation products. The insights gained from this study not only sheds light on the underlying mechanisms of lipid rancidity in rice bran but also offers significant implications for extending the shelf life and preserving the nutritional quality of RBO, aligning with the increasing global interest in this high-quality oil.


Assuntos
Lipidômica , Lipólise , Ácidos Graxos , Ácidos Graxos não Esterificados , Ácido Linoleico , Óleo de Farelo de Arroz
3.
Food Res Int ; 184: 114255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609233

RESUMO

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in controlling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, ultimately controlling the rate of deconjugation of the BS.


Assuntos
Bile , Ácido Linoleico , Emulsões , Lipólise , Fenômenos Químicos , Ácidos e Sais Biliares
4.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564014

RESUMO

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Assuntos
Benzoxazinas , Fusarium , Triticum , Benzoxazinas/farmacologia , Ácido Linoleico , Virulência , Ácido Fusárico , Nucleotídeos
5.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611912

RESUMO

This report demonstrates the first asymmetric synthesis of enantiopure structured triacylglycerols (TAGs) of the ABC type presenting three non-identical fatty acids, two of which are unsaturated. The unsaturated fatty acids included monounsaturated oleic acid (C18:1 n-9) and polyunsaturated linoleic acid (C18:2 n-6). This was accomplished by a six-step chemoenzymatic approach starting from (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The synthesis also benefited from the use of the p-methoxybenzyl (PMB) ether protective group, which enabled the incorporation of two different unsaturated fatty acids into the glycerol skeleton. The total of six such TAGs were prepared, four constituting the unsaturated fatty acids in the sn-1 and sn-2 positions, with a saturated fatty acid in the remaining sn-3 position of the glycerol backbone. In the two remaining TAGs, the different unsaturated fatty acids accommodated the sn-1 and sn-3 end positions, with the saturated fatty acid present in the sn-2 position. Enantiopure TAGs are urgently demanded as standards for the enantiospecific analysis of intact TAGs in fats and oils.


Assuntos
Ácidos Graxos , Glicerol , Éteres , Ácido Linoleico , Triglicerídeos
6.
Sci Rep ; 14(1): 8413, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600137

RESUMO

Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 µL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.


Assuntos
Antioxidantes , Probióticos , Streptococcus , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Linoleico , Lipopolissacarídeos , Probióticos/metabolismo , Radical Hidroxila , Superóxido Dismutase , Ácido Láctico/metabolismo
7.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578989

RESUMO

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Assuntos
Vacina BCG , Tuberculose , Humanos , Ácido Linoleico , Imunidade Treinada , Multiômica , Adjuvantes Imunológicos/farmacologia
8.
Int J Nanomedicine ; 19: 2807-2821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525014

RESUMO

Background: Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods: An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results: The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion: These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.


Assuntos
Nanopartículas , Fosfatidiletanolaminas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Portadores de Fármacos/química , Ácido Linoleico , Polietilenoglicóis/química , Nanopartículas/química , Movimento Celular , Proliferação de Células , Metilcelulose
9.
PLoS One ; 19(3): e0300719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527055

RESUMO

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.


Assuntos
Lactação , Ácido Linoleico , Feminino , Humanos , Bovinos , Animais , Lactação/fisiologia , Ácido Linoleico/metabolismo , Resposta ao Choque Térmico/fisiologia , Homeostase , Frutose/metabolismo , Temperatura Alta , Leite/metabolismo
10.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474834

RESUMO

Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.


Assuntos
Ácidos Graxos Ômega-6 , Ácido Linoleico , Animais , Humanos , Ácido Linoleico/farmacologia , Ácido Araquidônico/farmacologia , Biomarcadores , Análise de Sequência de RNA , Proteínas de Ligação ao Cálcio , Proteínas Adaptadoras de Transdução de Sinal
11.
J Oleo Sci ; 73(4): 455-466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556280

RESUMO

In this study, the phospholipid species [i.e., phosphatidylethanolamine (PE), phosphatidylcholine (PC), and sphingomyelin (SM)] in human milk (HM) were compared according to their fatty acid (FA) composition. 34 HM samples were collected and classified into three groups (A < B < C) according to their fat content. Stearic acid (C18:0) was the main FA in PE, PC, and SM. The highest concentrations of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) were observed in PE, whereas docosahexaenoic acid (DHA) was predominant in SM. Although PC exhibited the highest total saturated FAs (SFAs) and PE contained the highest unsaturated FAs (UFAs), very long-chain SFAs and monounsaturated FAs (MUFAs) were preferentially distributed in SM. PC and SM had higher saturation compared to PE. Regarding the effect of the fat content of HM on the FA composition of the phospholipid species, a limited influence was observed on the composition of SFAs and MUFAs of PE, SM, and particularly PC. However, a more pronounced effect on the composition of polyunsaturated FAs (PUFAs) in phospholipids was observed, especially for linoleic acid (LA), α-linolenic acid (ALA), EPA, and DHA, indicating that the composition of FAs in the phospholipid species was probably affected by the maternal diet.


Assuntos
Ácidos Graxos , Fosfolipídeos , Humanos , Leite Humano , Ácido Linoleico , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Fosfatidilcolinas , República da Coreia
13.
Bioresour Technol ; 399: 130566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467262

RESUMO

The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Ácido Linoleico/metabolismo , Microalgas/metabolismo , Processos Heterotróficos , Biomassa , Acetatos
14.
Sci Rep ; 14(1): 6392, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493198

RESUMO

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building upon the prior investigations of our team, which established a connection between LA levels in the follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of PCOS and provides novel insights into the dietary management of individuals with PCOS.


Assuntos
Ácido Linoleico , Síndrome do Ovário Policístico , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Síndrome do Ovário Policístico/metabolismo , Receptores de Estrogênio/metabolismo , Células da Granulosa/metabolismo , Apoptose , Inflamação/metabolismo , Proteína Forkhead Box O1/metabolismo
15.
Cancer Biol Ther ; 25(1): 2325130, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465855

RESUMO

Emerging evidence has provided considerable insights into the integral function of reprogramming fatty acid metabolism in the carcinogenesis and progression of endometrial cancer. Linoleic acid, an essential fatty acid with the highest consumption in the Western diet regimen, has shown pro-tumorigenic or anti-tumorigenic effects on tumor cell growth and invasion in multiple types of cancer. However, the biological role of linoleic acid in endometrial cancer remains unclear. In the present study, we aimed to investigate the functional impact of linoleic acid on cell proliferation, invasion, and tumor growth in endometrial cancer cells and in a transgenic mouse model of endometrial cancer. The results showed that Linoleic acid significantly inhibited the proliferation of endometrial cancer cells in a dose-dependent manner. The treatment of HEC-1A and KLE cells with linoleic acid effectively increased intracellular reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, caused cell cycle G1 arrest, and induced intrinsic and extrinsic apoptosis pathways. The anti-invasive ability of linoleic acid was found to be associated with the epithelial-mesenchymal transition process in both cell lines, including the decreased expression of N-cadherin, snail, and vimentin. Furthermore, treatment of Lkb1fl/flp53fl/fl transgenic mice with linoleic acid for four weeks significantly reduced the growth of endometrial tumors and decreased the expression of VEGF, vimentin, Ki67, and cyclin D1 in tumor tissues. Our findings demonstrate that linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cell lines and the Lkb1fl/flp53fl/fl mouse model of endometrial cancer, thus providing a pre-clinical basis for future dietary interventions with linoleic acid in endometrial cancer.


Assuntos
Neoplasias do Endométrio , Ácido Linoleico , Humanos , Feminino , Camundongos , Animais , Vimentina/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/uso terapêutico , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53 , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Carcinogênese , Proliferação de Células
16.
Sci Rep ; 14(1): 6532, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503788

RESUMO

The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.


Assuntos
Prunus armeniaca , Vitis , Ácido Linoleico , Staphylococcus aureus , Ácidos Graxos/farmacologia , Óleos de Plantas/farmacologia , Ácido Oleico/farmacologia , Antibacterianos/farmacologia , Sementes
17.
Sci Rep ; 14(1): 6644, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503857

RESUMO

We investigated whether linoleic acid (LA) supplementation could modulate emotional behavior and microglia-related neuroinflammation. For that, male mice of C57BL/6J genetic background fed either a high-fat diet (HFD) or a standard diet (STD) for 12 weeks, were treated with a vehicle or LA solution for 5 weeks before being evaluated for emotional behavior using a battery of behavioral tests. The animals were subsequently sacrificed and their brains collected and processed for immunofluorescence staining, targeting microglia-specific calcium-binding proteins (IBA-1). Neuroinflammation severity was assessed in multiple hypothalamic, cortical and subcortical brain regions. We show an anxio-depressive-like effect of sustained HFD feeding that was neither alleviated nor worsened with LA supplementation. However, increased IBA-1 expression and microgliosis in the HFD group were largely attenuated by LA supplementation. These observations demonstrate that the anti-neuroinflammatory properties of LA are not restricted to hypothalamic areas but are also evident at the cortical and subcortical levels. This study discloses that neuroinflammation plays a role in the genesis of neuropsychiatric disorders in the context of obesity, and that LA supplementation is a useful dietary strategy to alleviate the impact of obesity-related neuroinflammation.


Assuntos
Ácido Linoleico , Microglia , Camundongos , Masculino , Animais , Ácido Linoleico/farmacologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais
18.
Food Res Int ; 181: 114119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448102

RESUMO

Tara (Caesalpinia spinosa, Leguminosae) seed germ (TSG), a by-product of tara gum (E417) extraction, has been used as a protein- and polyphenol-rich food ingredient for human and animal nutrition. Nevertheless, TSG is the alleged culprit for a recent foodborne outbreak of even severe acute illnesses that have affected hundreds of individuals in the USA, perhaps triggered by nonprotein amino acids such as baikiain. Herein, the composition of TSG has been characterized at molecular level, with a focus on proteins, phenolics, lipids, and mineral composition. TSG contains 43.4 % (w/w) proteins, tentatively identified for the first time by proteomics, and 14 % lipids, consisting of 83.6 % unsaturated fatty acids, especially linoleic acid. Ash is surprising high (6.5 %) because of an elevated concentration of P, K, Ca, and Mg. The detection of a rare earth element such as gadolinium (Gd, 1.6 mg kg-1), likely sourced from anthropogenic pollution, suggests alternative hypotheses for the origin of TSG hazards.


Assuntos
Caesalpinia , Farinha , Animais , Humanos , Polifenóis , Sementes , Ácido Linoleico
19.
Curr Protoc ; 4(3): e992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439570

RESUMO

Oxylipins are oxidized metabolites of polyunsaturated fatty acids (PUFAs). They represent a class of risk markers and/or therapeutic targets for diseases associated with inflammation, including cardiovascular disease and brain disorders. Because the biological activities of free PUFAs and oxylipins depend on their chemical structures and concentrations, monitoring PUFAs and oxylipin levels in biological systems is critical for understanding their roles in health and disease. Traditionally, accurate quantification of free PUFAs and oxylipins in biological samples was performed separately, as PUFAs are often 1000-fold more abundant than the derived oxidized fatty acids (oxylipins). This article describes a liquid chromatography multiple reaction monitoring tandem mass spectrometry method for the quantitative analysis of five free PUFAs and 88 oxylipins in various biological fluids, including plasma, platelet supernatants, and tissues. The same approach can also be used in conjunction with an alkaline hydrolysis step to quantify total oxylipins in fish oils. We observed that in some samples, linoleic acid levels in plasma and eicosapentaenoic acid and arachidonic acid levels in brain tissue were above the upper limit of quantification. To address this issue, we developed a data analysis method to obtain PUFA and oxylipin concentrations in these samples without additional sample preparation, thus significantly saving time and labor. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantification of polyunsaturated fatty acids (PUFAs) and oxylipins using liquid chromatography multiple reaction monitoring tandem mass spectrometry Support Protocol 1: Preparation of internal standard mixed working solution Support Protocol 2: Preparation of standard mixed stock solution Support Protocol 3: Preparation of standard mixed working solution Alternate Protocol 1: Extraction and quantitation of free PUFAs and oxylipins from mouse brain tissue Alternate Protocol 2: Extraction and quantitation of total PUFAs and oxylipins from fish oil.


Assuntos
Ácidos Graxos , Oxilipinas , Animais , Camundongos , Estresse Oxidativo , Ácidos Graxos não Esterificados , Ácido Linoleico , Óleos de Peixe
20.
Nutrition ; 121: 112357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430738

RESUMO

OBJECTIVE: Polyunsaturated fatty acids are categorized as ω-3 or ⍵-6. Previous studies demonstrate that breast cancers display a high expression of fatty acid synthase and high fatty acid levels. Our study sought to determine if changes in plasma or red blood cell membrane fatty acid levels were associated with the response to preoperative (neoadjuvant) chemotherapy in non-metastatic breast cancer patients. METHODS: Our prospective study assessed fatty acid levels in plasma and red blood cell membrane. Response to neoadjuvant chemotherapy was evaluated by the presence or absence of pathologic complete response and/or residual cancer burden. RESULTS: A total of 28 patients were included. First, patients who achieved pathologic complete response had significantly higher neutrophil-to-lymphocyte ratio versus no pathologic complete response (P = 0.003). Second, total red blood cell membrane polyunsaturated fatty acids were higher in the absence of pathologic complete response (P = 0.0028). Third, total red blood cell membrane ⍵-6 polyunsaturated fatty acids were also higher in no pathologic complete response (P < 0.01). Among ⍵-6 polyunsaturated fatty acids, red blood cell membrane linoleic acid was higher in the absence of pathologic complete response (P < 0.01). Notably, plasma polyunsaturated fatty acid, ⍵-6, and linoleic acid levels did not have significant differences. A multivariate analysis confirmed red blood cell membrane linoleic acid was associated with no pathologic complete response; this was further confirmed by receiver operating characteristic analysis (specificity = 92.3%, sensitivity = 76.9%, and area under the curve = 0.855). CONCLUSIONS: Pending further validation, red blood cell membrane linoleic acid might serve as a predictor biomarker of poorer response to neoadjuvant chemotherapy in non-metastatic human epidermal growth factor receptor type 2-positive breast cancer. Measuring fatty acids in red blood cell membrane could offer a convenient, minimally invasive strategy to identifying patients more likely to respond or those with chemoresistance.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácido Linoleico , Terapia Neoadjuvante , Estudos Prospectivos , Ácidos Graxos Insaturados , Ácidos Graxos , Eritrócitos/metabolismo , Receptores ErbB/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...